Устранение и предупреждение аварий и неполадок электрооборудования

Содержание

Проверка на автоматическое отключение линий

Устранение и предупреждение аварий и неполадок электрооборудования

  • Опубликовано: 22 марта, 2021

1. Плановые и внеочередные осмотры электрооборудования

Одна из обязанностей электротехнического оперативного персонала – это осмотр оборудования электроустановок. Для чего нужно производить осмотр оборудования? Во-первых, для своевременного обнаружения технических неисправностей, замечаний в работе оборудования, а также своевременной локализации и ликвидации аварийной ситуации.

Оперативный персонал при производстве осмотра того или иного элемента оборудования электроустановки должен знать, на что обращать внимание и какие признаки являются не характерными для нормальной работы оборудования. В данной статье рассмотрим основные правила осмотра, когда необходимо производить осмотры, а также особенности осмотра основных элементов оборудования электроустановок.

Осмотр оборудования электроустановок производит персонал, который прошел соответствующее обучение по вопросам охраны труда, пожарной безопасности, а также знающий инструкции по обслуживанию оборудования и другие нормативные документы. Для осмотра электроустановок, персонал должен иметь III группу по электробезопасности.

Как правило, осмотр электроустановок с постоянным обслуживающим персоналом осуществляется не менее двух раз в сутки. Если на подстанции нет постоянного обслуживающего персонала, то осмотр осуществляет один раз в сутки.

Периодический осмотр оборудования электроустановок подстанции производится по утвержденному маршруту. То есть персонал осматривает оборудование в строгой последовательности, двигаясь по территории энергообъекта по установленным маршрутам.

Помимо плановых осмотров оборудования производятся так называемые внеочередные осмотры. Дополнительные или внеочередные осмотры производятся в следующих случаях:

  • при неблагоприятных погодных условиях: при тумане, во время мокрого снега, дождя, бури, загрязнения, гололеда;
  • после грозы. В данном случае производится осмотр оборудования открытых распределительных устройств, в частности разрядников и ограничителей напряжения на предмет работы во время грозы по установленным регистраторам срабатывания;
  • при возникновении аварийной ситуации. Например, после автоматического отключения оборудования первое, что следует сделать – это осмотреть отключившееся оборудование на предмет наличия повреждений и других замечаний в работе (выброс масла, не отключившийся выключатель, посторонние шумы, запах гари и др.);
  • в ночное время для выявления нагрева контактных соединений, разрядов и коронации оборудования. В данном случае осмотр производится не менее двух раз в месяц в ночное время преимущественно во влажную погоду, например, после дождя или при сильном тумане.

Результаты осмотра оборудования фиксируются в оперативной документации электроустановки. Персонал после производства осмотра оборудования делает соответствующую запись в оперативный журнал и сообщает о результатах вышестоящему оперативному персоналу – дежурному диспетчеру.

Если во время производства осмотра оборудования были обнаружены какие-то замечания, дефекты, то необходимо об этом записать в оперативном журнале, а также в журнале дефектов оборудования. После этого дежурный персонал сообщает об обнаруженных замечаниях не только диспетчеру, но и вышестоящему руководству (ИТР предприятия) для планирования работ по устранению возникших нарушений в работе оборудования.

В некоторых случаях, например, при обнаружении аварии, которая может угрожать безопасности людей и целостности оборудования, оперативный персонал должен принять самостоятельно незамедлительные меры по устранению возникшей опасности.

Во всех остальных случаях, при обнаружении замечаний в работе оборудования оперативный персонал сначала ставит в известность вышестоящий персонал, а затем под его руководством осуществляет ликвидацию возникшей аварийной ситуации.

Теперь рассмотрим, на что следует обращать внимание при осмотре того или иного элемента оборудования электроустановки, в частности электрической распределительной подстанции.

Автотрансформаторы и трансформаторы

Первое, на что следует обратить внимание при осмотре данных элементов оборудования – это отсутствие посторонних шумов в работе трансформатора (автотрансформатора). Наличие нехарактерных для нормальной работы трансформатора звуков, потрескиваний свидетельствует о возможной неисправности того или иного конструктивного элемента.

Заземление действующего электрооборудования – это одна из основных мер защиты оперативного персонала от поражения электрическим током. Поэтому, прежде чем приблизиться к работающему (авто) трансформатору, необходимо убедиться в наличии и целостности заземляющей шины.

Необходимо также проверить уровень масла в баке трансформатора и РПН. Как правило, уровень масла на маслоуказателе должен примерно соответствовать температуре окружающей среды. При этом необходимо учитывать текущую нагрузку трансформатора. Уровень масла в трансформаторе, работающем на холостом ходу, должен соответствовать средней температуре окружающей среды.

Если трансформатор нагружен, то его уровень масла, как правило, несколько выше температуры окружающей среды, так как при работе трансформатора под нагрузкой происходит нагрев его обмоток и соответственно его охлаждающей среды, то есть трансформаторного масла.

Помимо маслоуказателя, устанавливаемого на расширителе бака трансформатора и РПН, устанавливаются термометры, указывающие температуру верхних и нижних слоев масла. Показания данных термометров также фиксируются при осмотре трансформатора.

Допустимые значения данных термометров указываются в паспорте силового трансформатора (автотрансформатора), а также оговариваются в технической документации по обслуживанию электроустановок, в частности в правилах технической эксплуатации электрооборудования электростанций и сетей.

Во время осмотра необходимо проверить работоспособность системы охлаждения трансформатора (автотрансформатора). Как правило, в период высоких температур организовывают дополнительные осмотры с целью своевременного обнаружения нарушений в работе трансформатора (автотрансформатора), некорректной работы системы охлаждения.

Если автоматическое включение системы охлаждения не работает, ее необходимо включать вручную при достижении определенного значения температуры трансформаторного масла и нагрузки. Например, автоматическое включение системы обдува силового трансформатора с системой охлаждения Д производится при достижении температуры верхних слоев масла значения 550 или в случае нагрузки трансформатора до номинального значения. Поэтому оперативный персонал должен контролировать показания термометров трансформатора, а также уровень нагрузки и при необходимости своевременно включать в работу систему обдува.

Кроме вышесказанного, следует обратить внимание на следующие моменты:

  • целостность и отсутствие загрязнений изоляции вводов трансформатора;
  • давление масла в маслонаполненных вводах;
  • отсутствие нагрева контактных соединений;
  • целостность предохранительного клапана выхлопной трубы;
  • состояние силикагеля в воздухоосушительных устройствах;
  • отсутствие внешних повреждений, в частности течи масла на баке трансформатора, а также элементах системы охлаждения;
  • наличие первичных средств пожаротушения и соответствие их требованиям нормативных документов по пожарной безопасности.

Трансформаторы тока и напряжения

При осмотре трансформаторов тока и трансформаторов напряжения всех классов напряжения следует обращать внимание на следующее:

  • уровень масла и отсутствие течи масла для масляных, давление элегаза для элегазовых ТН и ТТ;
  • отсутствие внешних признаков повреждения изоляции вводов, корпуса, а также цепей вторичной коммутации;
  • отсутствие посторонних шумов и потрескиваний.

Трансформаторы тока

Рисунок 1. Трансформаторы тока

Элегазовые, масляные и вакуумные выключатели

Общие моменты, на которые следует обратить внимание при осмотре высоковольтных выключателей, не зависимо от их типа:

  • целостность и отсутствие загрязнения изоляции вводов;
  • отсутствие нагрева контактных соединений;
  • отсутствие шумов и потрескиваний внутри бака (полюса) выключателя;
  • работоспособность обогрева шкафов приводов и бака выключателя (в период низких температур);
  • наличие и целостность заземляющей шины бака выключателя;
  • целостность цепей вторичной коммутации выключателя;
  • соответствие указателей положения выключателя фактическому их состоянию.

При осмотре масляного выключателя, кроме вышеперечисленного, следует обращать внимание на уровень масла в баке выключателя, а также его цвет. Как правило, трансформаторное масло светлое, желтоватое. Если масло темное, то оно подлежит замене, так как такое масло не обеспечивает в полной мере своих изоляционных и дугогасительных характеристик.

Уровень масла в баке выключателя должен примерно соответствовать средней температуре окружающей среды.

При осмотре элегазовых выключателей следует обращать внимание на давление элегаза. В паспортных данных к выключателю, как правило, приводится график зависимости давления элегаза в выключателе от температуры окружающей среды (номинальная кривая плотности). Поэтому при осмотре оборудования, в том числе элегазового выключателя, необходимо фиксировать текущую температуру воздуха. На основании полученных данных делается вывод о соответствии фактического давления элегаза в выключателе номинальному давлению для данного значения температуры окружающей среды.

Разъединители

При осмотре разъединителей всех классов напряжения необходимо обращать внимание на следующие моменты:

  • целостность опорных и тяговых изоляторов, отсутствие сильных загрязнений изоляционного покрытия;
  • целостность заземляющего контура, гибких связей;
  • при наличии обогрева привода – его работоспособность в период низких температур;
  • отсутствие видимых повреждений конструктивных элементов разъединителя, привода.

Осмотр щитов, установок, панелей защит

При выполнении осмотра оборудования подстанции одним из этапов является осмотр оборудования общеподстанционного пункта управления (щита управления). В данном случае осматриваются щиты постоянного и переменного тока, панели защит, автоматики и управления элементами оборудования, аккумуляторная батарея, зарядные устройства, шкафы связи, телемеханики, учета электрической энергии.

При осмотре щитов переменного и постоянного тока следует обращать внимание на положение автоматических выключателей, рубильников, уровни напряжения на шинах, отсутствие посторонних сигналов.

Наладка релейной защиты высоковольтных ячеек

Рисунок 2. Наладка релейной защиты высоковольтных ячеек

При осмотре панелей защит оборудования следует обращать внимание на следующее:

  • соответствие положения переключающих устройств фактической схеме подстанции в соответствии с картой переключающих устройств того или иного присоединения;
  • отсутствие посторонних сигналов;
  • включенное положение автоматических выключателей, которые осуществляют питание защитных устройств.

Кроме того, при осмотре шкафов оборудования оперативный персонал фиксирует необходимые данные в соответствующие журналы и при необходимости выполняет проверку работы устройств и замеры основных электрических величин. Например, снятие показаний амперметров, ваттметров, вольтметров, проверка работоспособности защиты линий электропередач (обмен высокочастотными сигналами), фиксация значения дифференциального тока устройств ДЗШ подстанции и др.

При ежедневном осмотре аккумуляторной батареи производится замер напряжения на контрольных элементах (банках), плотность электролита (на свинцово-кислотных батареях). Осматривают также зарядные устройства АБ, фиксируют значение напряжения на батарее и ток подзаряда. При выполнении осмотра аккумуляторной батареи необходимо обеспечивать все необходимые меры безопасности, предусмотренные инструкцией по обслуживанию АБ того или иного типа. Кроме того, следует проверять работоспособность системы приточно-вытяжной вентиляции и обогрева помещения аккумуляторной батареи.

Ревизия высоковольтной ячейки

Рисунок 3. Ревизия высоковольтной ячейки

В заключении следует отметить, что осмотр электроустановок подстанций необходимо осуществлять в соответствии с требованиями правил безопасной эксплуатации электроустановок и с применением необходимых индивидуальных средств защиты.

2. Работы по устранению и предупреждению аварий и неполадок электрооборудования

Каждое нарушение нормальной работы электроустановок считают аварией.

Аварии делятся на станционные, электросетевые и системные. К станционным авариям относятся:

  • а) уменьшение количества электрической энергии, отпускаемой электростанцией потребителям более чем на 500 кВт·ч;
  • б) сброс нагрузки электростанции;
  • в) повреждение основного оборудования электростанции, вызвавшее выход его из строя или немедленное отключение.

К электросетевым авариям относятся:

  • а) ошибочное отключение эксплуатационным персоналом или автоматическими устройствами подстанции воздушных или кабельных линий, вызвавшее уменьшение количества отпускаемой потребителям электрической энергии более чем на 500 кВт·ч для сетей напряжением 15 кВ и выше и более чем на 100 кВт·ч для сетей напряжением 2… 10 кВ;
  • б) повреждение основного оборудования, вызвавшее выход его из строя или немедленное отключение.

Отключение линии электропередачи вследствие неправильных действий эксплуатационного персонала или неправильной работы релейной защиты называют потребительскими отключениями.

Системные аварии возникают при рассогласовании в работе отдельных электростанций.

Браком в работе считают такое состояние, когда недоотпуск электроэнергии составляет менее 500 кВт·ч для сетей напряжением 15 кВ и менее 100 кВт·ч для сетей напряжением ниже 10 кВ. К браку в работе приводят повреждения вспомогательного оборудования, повреждения основного оборудования, находящегося в ремонте, задержка основного оборудования в ремонте, ошибочное отключение оборудования (если это не привело к аварии), снижение частоты ниже 49,5 Гц на 30…60 мин или повышение частоты выше 50,5 Гц длительностью более 30 мин, снижение напряжения ниже контрольных значений более чем на 2 ч.

Перегорание предохранителей или отключение масляных выключателей на стороне высшего и низшего напряжения трансформатора вследствие короткого замыкания в распределительной сети низкого напряжения называют погашением установок.

Основные меры борьбы с авариями — это четкое выполнение правил устройства электроустановок, правил эксплуатации и безопасности труда. К главным требованиям относятся следующие.

  1. Не допускать повреждения изоляции токоведущих частей электрических устройств:
    • а) соблюдать допустимые расстояния между изоляторами и проводами, а также поддерживать в чистоте изоляторы;
    • б) не допускать перекрытий, вызванных грозой, то есть правильно и своевременно устанавливать молниезащиту и следить за ней;
    • в) предупреждать механические повреждения кабельных линий распределительных устройств и т. д.
  2. Своевременно проводить плановые ревизии, обходы, текущие и капитальные ремонты, чтобы предупреждать падение и поломки опор, ведущие к коротким замыканиям.
  3. Правильно выполнять пролеты линий электропередач и выбирать площадь поперечного сечения проводов; проводить их расчет на механическую прочность под действием собственного веса (с учетом гололеда), силы ветра и т. д.
  4. В трансформаторах своевременно проводить испытания масла, а в генераторах следить за состоянием обмоток и не допускать их внутренних повреждений.
  5. Четко выполнять правила безопасности труда и технической эксплуатации, знать схемы коммутации, порядок и последовательность различных переключений и т. д.

Большое значение имеют также предупредительные плакаты и надписи на рабочих местах.

При возникновении аварии эксплуатационный персонал должен немедленно приступить к ликвидации ее, чтобы сократить аварийные перебои в снабжении электрической энергией. Успешные действия работников по ликвидации аварии зависят от знания ими схем электроустановок и подготовленности их к устранению аварий.

Статистикой установлено, что значительная часть аварий на электроустановках происходит по вине обслуживающего персонала.

Причинами таких аварий служат:

  • нарушения правил технической эксплуатации оборудования, правил безопасности;
  • неисправности по вине завода-изготовителя и проектных организаций; стихийные явления и прочие причины.

Во время ликвидации аварий необходимо соблюдать общие правила безопасности при работе в установках высокого напряжения.

Работы по ликвидации последствий аварии бригады выполняют по нарядам, а в случае необходимости аварийные бригады работают без нарядов — по устному, письменному или телефонному распоряжению дежурного электроустановки с обязательным занесением распоряжений в журнал дежурств.

Перед началом работы по устранению аварии снимают напряжение, устанавливают защитные заземления, вывешивают плакаты и ограждают место работы.

Аварийная бригада не имеет права выполнять какие-либо переключения в сети без распоряжения дежурного персонала, чтобы исключить возможную подачу напряжения на участок, где работает другая ремонтная бригада. Если работа выполняется вдали от места дежурства, аварийная бригада поддерживает телефонную связь с дежурным и сообщает ему обо всех переключениях, результатах осмотра, испытаний и т. д.

На электроснабжающих предприятиях ведут строгий учет аварий, изучают причины их возникновения и разрабатывают противоаварийные мероприятия на основе статистических данных по предыдущим авариям. О результатах расследования аварии составляют акт с указанием в нем всех выявленных обстоятельств.

Проверка на автоматическое отключение линий

В настоящее время на рынке электронных коммутационных аппаратов появились эффективные, и довольно, удобные устройства — дифференциальные автоматы.

Они компактны и содержат в себе сразу несколько защит: максимальная токовая (от короткого замыкания), тепловая (от превышения номинальной нагрузки дольше установленного времени) и УЗО (защита человека от поражения электрическим током при ухудшении изоляции проводки или электроприборов).

С появлением данных аппаратов появляется и необходимость проверки их исправности. В этой статье мы подробно расскажем, как проверить дифавтомат на работоспособность всеми доступными методами.

Как проверить дифференциальный автомат и УЗО

К сожалению, проверка у дифавтоматов, в условиях дома, таких важных характеристик как время срабатывания, перегрузочные характеристики, ток короткого замыкания не получится. Так как для проверки этих параметров необходимо иметь специальные приборы и оборудование.

Отличие дифавтомата от УЗО

Для дома вполне достаточно проверить дифференциальный автомат на срабатывание и соответствие току утечки защиты, при котором автомат отключается и обеспечивает защиту от поражения электрическим током.

Дифференциальный автомат отличается от устройства УЗО только наличием автоматического выключателя. То есть это тот же УЗО плюс автомат в одном корпусе.

Поэтому все проверки на пригодность дифавтомата аналогичны тестированию УЗО.

Виды проверок дифавтомата

Существует несколько способов проверки защитных устройств на работоспособность, это:

  1. Проверка кнопкой «ТЕСТ», расположенной на корпусе прибора.
  2. Обычной батарейкой от 1,5 В до 9 В.
  3. Резистором, имитирующим нарушение сопротивления изоляции электропроводки и бытовых приборов.
  4. Простым постоянным магнитом.
  5. Специальным электронным устройством для проверки параметров дифференциального автомата и УЗО используемых в промышленности.

Перед приобретением устройства защиты нужно знать, какие задачи оно будет выполнять. Для противопожарных целей дифавтомат и УЗО выбираются с током утечки 300 мА. Если необходима защита от поражения электрическим током, используется устройство с током утечки 30 мА. В сырых и влажных ванных помещениях или банях нужна защита с током утечки 10 мА.

Способ №4 – Прибором

Ну и последняя из методик, позволяющая безопасно проверить УЗО на срабатывание в домашних условиях с помощью специального тестера – амперметра либо мультиметра.

В этом случае помимо прибора, Вам понадобятся следующие составляющие элементы схемы:

  • лампочка на 10 Вт;
  • реостат;
  • резистор, сопротивление 2 кОм;
  • провода.

Реостат нужен для того, чтобы изменять величину тока утечки. Если нет под рукой реостата, можно взять диммер, регулирующий яркость освещения в комнате, который имеет аналогичный принцип действия и подойдет для проверки!

Вам нужно собрать последовательную схему следующим образом: мультиметр-лампочка-резистор-реостат. Свободный щуп от мультиметра нужно подсоединить к вводу нуля в УЗО, а свободный провод от реостата к выходу фазы. В результате Вы можете проверить работоспособность УЗО, плавно поворачивая регулятор реостата в сторону увеличения тока утечки. Мультиметр либо амперметр позволит зафиксировать, при каком значении тока утечки происходит срабатывание устройства защитного отключения. Наглядно видеть методику проверки защитной автоматики прибором и лампочкой Вы можете на данном видео примере:

Как проверить работоспособность лампой и прибором?

Вот мы и предоставили все наиболее простые и безопасные способы проверки функционирования устройства защиты от утечек тока

Обращаем Ваше внимание на то, что определять работоспособность изделия на человеке, то есть себе, к примеру, дотрагиваться пальцем до водонагревателя, от которого немного бьет током, категорически запрещается правилами ПУЭ. Ни в коем случае не пользуйтесь советами горе-электриков, которые на форумах рекомендуют проверить УЗО на срабатывание, дотронувшись рукой к корпусу неисправного электроприбора

Если автоматика не сработает, Вам это может стоить жизни!

Виды автоматических выключателей

Любое методическое руководство должно оговаривать, для каких типов защитных автоматов оно разработано.

В данном случае в состав дифавтоматов входят АВ («автоматические выключатели»), используемые в сетях до 1000 В, максимальное напряжение между фазами которых не превышает 440 В.

В приведенных выше стандартах приводится три классификационных схемы для таких приборов.

По количеству полюсов

В зависимости от количества контролируемых фазных линий автоматические выключатели делятся на следующие категории:

  • однофазные (одно- и двухполюсные) или трехфазные (трех- и четырехполюсные);
  • для постоянного или переменного токов.

Отметим, что проверка правильности монтажа присутствует практически в каждой методике тестирования, поэтому в таблице ниже мы привели информацию, на основании которой можно сделать вывод о корректности схемного размещения того или иного выключателя.

Виды автоматических выключателей

Под однополюсным автоматом в данном случае понимается прибор, контролирующий превышение тока только по одной фазе.

Различие между однополюсными и двухполюсными автоматом

По току мгновенного расцепления

На сегодняшний день различают две группы выключателей, принадлежащих разным диапазонам токов мгновенного отключения (ранее было три):

  • группа «B» (от 3 до 5 In);
  • группа «C» (от 5 до 10 In).

Диапазоны токов мгновенного расцепления

В ходе проверки правильности выбора защитных автоматов следует учитывать не только номинальную мощность сети, но и пусковые токи некоторых электромашин, которые могут достигать 5-7 In.

Напомним, что под номинальным током защитного автомата может пониматься как максимально допустимый ток, проходящий через коммутационную цепь автомата, так и предельные токи, протекание которых через тепловой расцепитель не приводят к размыканию контактов.

В данном случае под In подразумевается максимальный нерасцепляющий ток.

По постоянной времени

Этот классификатор применяется к выключателям, работающим в цепях с постоянным током.

Различают две подгруппы выключателей, разделяемых по этому параметру:

  • с постоянной времени Тс
  • Тс

Методика испытаний дифавтоматов

Каждая конкретная методика испытаний защитных отключающих устройств разрабатывается с учётом специфических особенностей участка, на котором они эксплуатируются.

В любом случае она должна базировать на алгоритмах, рассмотренных в приведенных выше стандартах. В пакете документов, подаваемом на аттестацию электроизмерительной лаборатории, она должна быть оформлена отдельной инструкцией.

Следует отметить, что испытания данного типа выполняются с подачей мощных импульсов тока, что часто приводит к неплановому срабатыванию УЗО, поэтому практическая технология тестирования дифавтомата должна предусматривать сборку специальных измерительных схем или коммутационное разделение автомата и УЗО.

Учитывая большое разнообразие аппаратных решений для дифференциального модуля и, как следствие, непредсказуемость их поведения, чаще всего прибегают ко второму варианту, размыкая цепи, соединяющие УЗО и АВ.

Провода, соединяющие УЗО и автомат

Измерение время-токовых параметров производят с применением специального оборудования, позволяющего отслеживать временные параметры мощных импульсов тока. Электролаборатории, оказывающие услуги данного типа, для этих целей обычно используют прибор УПТР.

Прибор УПТР в работе

Испытания и замеры проводятся с помощью схемы, изображённой на следующем рисунке:

Схема УПТР

Результаты измерений регистрируются в рабочем журнале и после математической обработки оформляются в виде протокола испытаний.

Электротехническая лаборатория «Мега.ру» принимает заказы на проведение испытаний всех видов электроустановок, включая системы защитного отключения. Уточнить детали сотрудничества и сделать заказ на проведение работ можно по телефонам, размещенным в разделе «Контакты».

Сложность схем подключения

Для подключения любого оборудования необходимо затратить определенное время. Чем больше ты тратишь времени на выполнение одной операции, тем меньший объем работы ты сделаешь. Именно по этой причине были придуманы всевозможные пресс клещи, стрипперы и другие инструменты – для уменьшения затраты времени. Данный пункт подразумевает сложность и скорость подключения АВДТ по сравнению связки «узо + автомат».

Схема подключения УЗО и автомата собирается следующим образом фазный провод первым делом подключается на автоматический выключатель, затем выходит из автомата и подключается на верхнюю «фазную» клемму УЗО. Нулевой провод подключается напрямую на верхнюю «нулевую» клемму УЗО. Затем фаза и ноль отходят от нижних клемм УЗО к потребителю.

Схема подключения дифавтомата выглядит немного проще здесь фазный и нулевой провод подключаются сразу на верхние клеммы дифа (каждый на свою клемму). С нижних клемм питание идет к потребителю.

Таким образом, получается гораздо меньше коммутаций и дополнительных соединений. Следовательно, при эксплуатации дифавтоматов существенно упрощается внутренняя установка щитков.

Принципы установки автоматического выключателя дифференциального тока с наличием заземления

Для правильной установки дифавтомата актуальны правила, работающие и в случае применения УЗО — что это такое, мы уже разобрались в другой статье.

А именно: к дифавтомату подключается исключительно фаза и ноль цепи, для защиты которой он будет использован. Иными словами, это означает, что вышедший из автомата провод «ноль» объединять с остальными нулями недопустимо. Дифавтомат будет в таком случае постоянно отключаться из-за наличия в этих проводах принципиально отличающихся токов.

При установке дифавтомата в схему с заземлением существует 2 варианта:

  • вводный дифавтомат, который смонтирован, соответственно, на вводе и служащий для защиты схемы в целом, то есть все входящие в нее электрические группы;
  • дифавтомат, включенный в цепь для протекции группы, стоящей отдельно группы.

На первой схеме показано подключение первичного дифавтомата, следующая показывает монтаж включенного в цепь.

Для того чтобы осуществить подключение дифавтомата по первой схеме, следует заблаговременно разделить электрические подгруппы с помощью типовых выключателей со встроенной автоматикой. Выводы этих автоматов в качестве нагрузки подключаются к контактам дифавтомата, расположенным в его в нижней части. К верхним же клеммам дифавтомата подводится напряжение для питания.

У этой схемы есть существенный недостаток: в случае возникновения неполадок в одной любой цепи из подключенных к дифавтомату, сработает в аварийном режиме ее автомат и, как следствие, будут отключены все остальные группы.

Для жилых и прочих помещений, где еще сохранилась старая проводка, актуально регулярное ложное срабатывание вводных дифавтоматов на утечку тока. Поэтому тут рекомендуется использовать дифавтоматы, у которых значение тока пробоя, вызывающего срабатывание, составляет 30 мА.

Подключение по второй схеме обычно применяется для повышения электробезопасности объектов (помещений), где, собственно, осуществляется подключение такой электросистемы. Эта схема является более надежной и эффективной в аспекте защиты электросети на случай различных аварийных ситуаций. Такую схему целесообразно применять в помещениях с повышенной требовательностью к безопасности, или с повышенной влажностью и другими потенциально опасными внешними факторами: детские комнаты, ванные, кухни и т.д.

Очевидна более высокая эффективность подключения дифавтомата по второй схеме. Это не только повышает все характеристики электробезопасности сети и отдельных составляющих, но и дает высокую практичную пользу. Так, в случае выхода из строя отдельной группы, обособленной собственным автоматом, остальная часть цепи и другие устройства не пострадают и не останутся обесточены.

Таким образом можно обеспечить максимальную безопасность и бесперебойное электроснабжение в доме или другом помещении. Естественно, покупка нескольких дополнительных дифавтоматов потребует дополнительных затрат на реализацию такого подключения. Но в сравнении с эксплуатационными показателями и пользой от такого решения, затраты эти абсолютно оправданы.

Кратко об автоматах защиты

Автоматические автоматы необходимо проверять на работоспособность, чтобы избежать аварийной ситуации

Автоматы защиты или автоматические выключатели – это электрические механизмы, основная задача которых при появлении нештатных или аварийных ситуаций обесточить проблемную линию или все помещение. Он отслеживает в режиме реального времени напряжение в электрической цепи.

Автоматические выключатели получили широкое распространение благодаря приемлемой цене, надежности и простоте использования, установки и обслуживания. Большое количество модификаций позволяет устанавливать устройство в электроустановки большой и малой мощности. Также выключатели бывают оснащены ручным и дистанционным управлением.

Виды автоматических выключателей

Любое методическое руководство должно оговаривать, для каких типов защитных автоматов оно разработано.

В данном случае в состав дифавтоматов входят АВ («автоматические выключатели»), используемые в сетях до 1000 В, максимальное напряжение между фазами которых не превышает 440 В.

В приведенных выше стандартах приводится три классификационных схемы для таких приборов.

По количеству полюсов

  • однофазные (одно- и двухполюсные) или трехфазные (трех- и четырехполюсные);
  • для постоянного или переменного токов.

Отметим, что проверка правильности монтажа присутствует практически в каждой методике тестирования, поэтому в таблице ниже мы привели информацию, на основании которой можно сделать вывод о корректности схемного размещения того или иного выключателя.

Виды автоматических выключателей

Под однополюсным автоматом в данном случае понимается прибор, контролирующий превышение тока только по одной фазе.

Различие между однополюсными и двухполюсными автоматом

По току мгновенного расцепления

На сегодняшний день различают две группы выключателей, принадлежащих разным диапазонам токов мгновенного отключения (ранее было три):

  • группа «B» (от 3 до 5 In);
  • группа «C» (от 5 до 10 In).

Диапазоны токов мгновенного расцепления

В ходе проверки правильности выбора защитных автоматов следует учитывать не только номинальную мощность сети, но и пусковые токи некоторых электромашин, которые могут достигать 5-7 In.

Напомним, что под номинальным током защитного автомата может пониматься как максимально допустимый ток, проходящий через коммутационную цепь автомата, так и предельные токи, протекание которых через тепловой расцепитель не приводят к размыканию контактов.

В данном случае под In подразумевается максимальный нерасцепляющий ток.

По постоянной времени

Этот классификатор применяется к выключателям, работающим в цепях с постоянным током.

Различают две подгруппы выключателей, разделяемых по этому параметру:

  • с постоянной времени Тс
  • Тс

Проверка кнопкой «ТЕСТ»

Эта кнопка расположена на лицевой стороне дифференциального автомата. Перед проверкой работоспособности устройства его подключают к сети. При нажатии на кнопку «ТЕСТ» защита отключает сеть. Кнопка «ТЕСТ» имитирует ток утечки, как при нарушении целостности изоляции проводов.

Проверка кнопкой тест

Нажатием этой кнопки происходит закорачивание нулевого провода входной клеммы и фазового провода на выходе устройства, через резистор, рассчитанный на ток 30 мА (или другой ток утечки, указанный на автомате). Устройство защиты отключается и обеспечивает защитную функцию. Такую проверку можно делать без нагрузки. Дифференциальный автомат может быть электромеханическим или электрическим, главное правильно подключить его к сети.

Проверка при помощи пальчиковой батарейки

Очень простым методом считается проверка УЗО с помощью пальчиковой батарейки. Она позволяет проверить работоспособность уже во время приобретения устройства.

Для непосредственного проведения тестирования к любому полюсу устройства подключается отрезок провода длина которого составляет не менее 10 сантиметров. Второй провод подключен в нижней части прибора еще при изготовлении. После этого пальчиковая батарейка подносится к обоим проводам.

Когда жилы касаются плюса и минуса УЗО должно сработать. Если же этого не произошло, необходимо перевернуть полюса батарейки и повторить проверку. В случае исправности прибора, рычаг отключения должно выбить.

Проверка функций УЗО

Существует пять действенных способа проверки на исправность системы отключения дифференциального автомата на ток утечки:

  • специальной кнопкой на корпусе выключателя;
  • гальваническим элементом, вырабатывающим напряжение в ходе химической реакции, попросту говоря, батарейкой;
  • имитацией ухудшения сопротивления изоляции, подключая резистор в цепь устройства;
  • с помощью постоянного магнита;
  • с помощью специального точного электронного прибора, выпускаемого для этих целей.

Рассмотрим каждый из способов проверки дифавтомата более подробно.

При нажатии на кнопку проверки работоспособности дифференциального автомата сразу же должно произойти автоматическое отключение его, если этого не произошло, то система УЗО, установленная в выключателе, неисправна. То есть, если кнопка тест не работает, последующая эксплуатация не будет обеспечивать надёжной защиты при пробое. Проверять таким способом стоит при правильно подключенном в сеть выключателе, так как некоторые дифавтоматы имеют электронную схему защиты и без подключения или при обрыве одного из питающих проводов, будь то ноль или фаза, срабатывать не будут. Данные автоматические выключатели со встроенным электромагнитным УЗО должны срабатывать и защищать человека от попадания под опасный ток, даже при обрыве нулевого подводящего проводника.

Проверка дифференциального автомата кнопкой ТЕСТ демонстрируется на видео-уроке:

Стоит заметить, что для правильной проверки дифференциального автомата с помощью кнопки «Тест» не обязательно подключение потребителей, то есть нагрузки к его полюсам.

Данным способом проверяются как двухполюсные автоматические выключатели, рассчитанные на 220 Вольт, так и выключатели, предназначенные для трёхфазных цепей. Дело в том, что любое дифференциальное защитное устройство работает на сравнении входящих и исходящих токов, а замыкая контакты батарейки на одном из полюсов автомата, имитируется перекос этих токов, от чего и срабатывает механизм отключения.

На видео ниже наглядно показывается, как проверить дифавтомат с помощью батарейки:

Отсюда R = U/I, где величина напряжения зависит от величины его в сети, то есть 220 В, а ток указан на самом дифференциальном автомате. Например, при указанном токе утечки 10 mA: 220В/10mA = 22 кОм, а при 30 mA: 220В/30 mA = 7,3 кОм. Чтобы увидеть этот ток утечки мультиметром или тестером, нужно выставить его на амперметр и подключить последовательно к резистору.

Данное испытание можно проделать и лампочкой, но у неё очень низкое сопротивление и придется всё равно подключать дополнительный резистор. Для плавного изменения тока, можно в цепь также подключить диммер, применяющийся как регулятор яркости освещения ламп.

О том, как проверить дифавтомат с помощью резистора, подробно рассказывается на видео:

Таким способом в одном из электромагнитов, контролирующих и сравнивающих ток в цепи, наведётся магнитное поле, которое и даст сигнал на отключение автомата. Так проверить можно только электромагнитные, но никак не электронные дифавтоматы.

Данное устройство на уровне лабораторных исследований может произвести проверку и испытание как устройств защитного отключения, так и других более сложных измерений, вплоть до испытания высоковольтного электрооборудования. Но его стоимость для бытового использования, довольно, высока.

На видео наглядно показывается испытание дифференциального автомата измерителем UNI-T UT 582:

Вот мы и рассмотрели, как проверить дифавтомат на работоспособность батарейкой, магнитом и другими действенными способами. Надеемся, предоставленная информация была для вас полезной и понятной!

Рекомендуем также прочитать:

  • Как проверить УЗО на срабатывание
  • Причины срабатывания дифференциального автомата
  • Причины поражения электрическим током

Кратко об автоматах защиты

Автоматические выключатели предназначены выполнять роль коммутационных аппаратов, необходимых для проведения нагрузочного тока в режиме нормальной работы оборудования и размыкания электрической цепи в аварийном режиме при повышенном или пониженном напряжении.

Широкое применение АВ получили благодаря простоте установки, надежности в эксплуатации, безопасности при замене и обслуживании, быстроте срабатывания при токах короткого замыкания или ненормальных режимах. Такие автоматы устанавливают в электроустановках как с малой, так и с большой мощностью.

Существуют устройства с ручным и дистанционным управлением. При ненормальных режимах выключатель срабатывает автоматически. Все аппараты снабжены расцепителем максимального тока. Некоторые модели оснащены, кроме максимального и расцепителем по минимальному току. Такие автоматы предназначены заменять рубильники или плавкие вставки в пробочных предохранителях, что обеспечивает более надежную защиту бытовых приборов и подключенного оборудования.

АВ выпускаются в основном на ампераж от 6,3А до 6300А для установок переменного тока до 1 кВ, с разным числом полюсов. Это могут быть одно-, двух-, трех- и четырехполюсные автоматические выключатели.

Подробнее об устройстве автоматического выключателя вы можете узнать в нашей соответствующей статье. Сейчас бы хотелось дополнительно рассказать лишь о том, что защиту от ненормальных режимов осуществляет электромагнитный расцепитель, благодаря которому происходит отключение аппарата.

Существует два вида расцепителей:

  • электромагнитный или максимальный расцепитель от токов КЗ и перегрузки (без выдержки времени);
  • тепловой (электронный), срабатывающий при токах значительно превышающих номинальные значения нагрузочные токи (с выдержкой времени).

Оба вида защиты должны соответствовать нормативным документам завода-изготовителя (ПТЭЭП в Приложении 3). Для того чтобы устройство работало нормально перед установкой автоматического выключателя его необходимо проверить. Эта операция называется прогрузкой автомата, на чем мы сейчас и остановимся более подробно.

Как проверить УЗО: 3 совета

Прибор УЗО нужен для того, чтобы вовремя узнать об утечке тока, которая может привести к печальным последствиям для здоровья человека. Для того чтобы прибор работал исправно, время от времени нужно проводить тесты на его работоспособность

Важно заметить, что провести полную диагностику устройства в домашних условиях не удастся: для этого нужны специальные инструменты

Чтобы быть уверенным в правильной работе УЗО, необходимо проверять устройство не менее раза в один месяц. Устройство защитного отключения должно реагировать моментально иначе оно не выполняет своих функций и его можно считать неработоспособным. Если уверенности в правильности самостоятельной проверке нет, лучше обратиться за помощью к профессиональному мастеру.

  • Чтобы провести тестирование не нужно быть квалифицированным специалистом. Проверку производят при помощи кнопки, расположенной на корпусе устройства.
  • Срабатывание кнопки при ее нажатии имитирует утечку тока. Номинал тока утечки задается величиной тестового резистора, имеющего встроенный тип.
  • Если подключение устройства было выполнено правильно, то после нажатия кнопки, УЗО должно сразу сработать.

Этот тест распространен больше всех других, так как для его выполнения не требуется особых навыков. Он надежный и безопасный. Штатный функционал «дает устройству понять», что началась утечка тока. При этом для пользователя – это всего лишь проверка правильного движения тока о цепи.

Способы проверки УЗО и ДИФ автомата на работоспособность

Собирая электрощит для дачи я озаботился тем, что УЗО или ДИФ автомат могут быть бракованными или просто выйти из строй со времением.На этапе сборки электрощита мне необходима была гарантия того, что применяемые мною УЗО работоспособны.Как же проверить УЗО / ДИФ автомат на исправность?Есть несколько способов такой проверки…— Стандартный — кнопкой «ТЕСТ» на корпусе устройства.— Батарейкой— Проверка по току утечки— Магнитом 1Стандартный — кнопкой «ТЕСТ» на корпусе устройства.Данным способом проверяется работоспособность УЗО или ДИФ автомата встроенными средствами — создается утечка тока по которой происходит срабатывание.Иногда бывают случаи, когда кнопкой «Тест» не происходит срабатывания, но само УЗО работоспособно.В таком случае все же лучше поменять такое УЗО.Проверку работоспособности УЗО / ДИФ автомата посредством нажатия на кнопку «Тест» на корпусе устройства необходимо осуществлять 1 раз в месяц.2БатарейкойБатарейкой можно проверить УЗО / ДИФ автомат на номинал 10 — 30 mA.Берете батарейку на 1,5 — 9 вольт. Присоединяете к ней проводки к каждому полюсу.Один проводок от батарейки подключаете к контакту фазного входа, а второй — к фазному выходу — исправное УЗО / ДИФ автомат должны сработать.УЗО / ДИФ автомат должны также сработать и при подключении батарейки к нулевому входу и к нулевому выходу.Если тестируется УЗО на 10 — 30 mA, то такой способ проверки будет действенный — так можно по быстрому проверить на работоспособность устройства в магазине.УЗО / ДИФ автомат на 100 — 300 mA таким образом проверить не получится — УЗО не сработает. Еще нюанс:УЗО с характеристикой А можно проверить батарейкой подключаемой любой полярностью.УЗО с характеристикой АС сработает только в одном случае — т.е. если при проверке такого устройства оно не сработало, то просто поменяйте полярность подключаемых контактов.3Проверка по току утечки (есть варианты с использованием земляного провода и без земляного провода)Для этого используется сопротивление нагрузки — резистор.Один конец резистора подключается на выход фазного провода УЗО, а второй — ко входу нулевого провода.Для такой проверки необходимо знать конкретное сопротивление для конкретного тока утечки — это легко вычисляется с помощью закона Ома:Сила тока = напряжение делим на сопротивление: I = U / R I — сила токаU — напряжениеR — сопротивлениеОтсюда мы при необходимости можем также узнать напряжение и сопротивление:R = U / IU = I * R Сопротивления для СРЕДНИХ значений тока утечки для УЗО номиналов 10mA, 30mA, 100mA и 300mA:10mA — 220В / 10mA = 22кОм30mA — 220В / 30mA = 7,3 кОм100mA — 220В / 100mA = 2,2 кОм300mA — 220В / 300mA = 733 Ом Сопротивление нагрузки для проверки срабатывания подключается одной стороной к фазному выходу проверяемого УЗО, а второй стороной к нулевому входу.Следует заметить, что проверяемое УЗО / ДИФ автомат могут и не сработать при таких сопротивлениях нагрузки, поскольку по ГОСТу допускается разброс значений…на приборчик собранный для проверки УЗО и ДИФ автоматов по токам удечки.4МагнитомМагнитом можно проверить какое УЗО у вас в руках — электромагнитное или электромеханическое.Лучше всего использовать электромеханическое УЗО.Если вы возьмете проверяемое взведенное (включенное) УЗО и поводите каким нибудь магнитом по его боковой стороне (с одной и с другой стороны), то электромагнитное УЗО сработает, а электромеханическое — нет.Это быстрый способ проверки устройства в магазине / на рынке.Конечно же подобные устройства лучше всего приобретать ТОЛЬКО у официальных дилеров чтобы не нарваться на подделку…Расчеты по проверке УЗО / ДИФ автоматов по току утечки .

Проверка УЗО с использованием лампы контроля

Каждый, кто заботится о своей безопасности, должен проводить контрольную проверку правильной работы УЗО хотя бы раз в несколько месяцев. Работу УЗО можно проверить самостоятельно, используя практичный и надежный метод. Устройство работает так, что при появлении утечки тока, оно срабатывает.

Для проверки устройства таким способом понадобится электрический провод, электрическая лампа накаливания, патрон, сопротивления и специальные электроинстуремнты. Перед тем как создавать утечку, следует рассчитать, какой ток утечки может быть создан. Это зависит от тока, который протекает через электрическую лампу.

Как проверить работу УЗО при помощи лампы:

  • Параллельно соединить два резистора. Чтобы их мощность составила 10 Вт, при этом сопротивление должно быть 2,35 кОМ.
  • Используя провода, эти соединения присоединяют к электрической лампе.
  • Если в помещении к розеткам есть подключение защитного нуля, то проверить работу УЗО можно, используя любую розетку.
  • Один провод нужно соединить с фазой, другим проводом необходимо прикоснуться к защитному нулю.

Как только действие будет совершено, устройство должно мгновенно сработать. Если в розетках отсутствует защитный ноль, то проверка каждой розетки будет невозможна. Если дело обстоит таким образом, проверить работает ли УЗО можно через электрический щиток.

Как работают устройства автоматики повторного включения (АПВ)?

В виду большой протяженности электрических сетей их обслуживание и ремонт, в случае повреждения, усложняются необходимостью доставления бригады к месту выполнения работ. Из-за чего большинство внештатных ситуаций, которые приводят к отсутствию напряжения, решает автоматическое повторное включение (АПВ) без необходимости вмешательства работников.

Назначение АПВ

Назначение АПВ

Рис. 1: Назначение АПВ

Автоматическое повторное включение предназначено для включения выключателей после того, как аварийное отключение обесточило линию. При этом АПВ позволяет уменьшить перерывы в электроснабжении на количество кратковременных аварий. Посмотрите на рисунок 1, в случае замыкания в точке К1 с последующим отключением высоковольтного выключателя Q1 происходит срабатывание АПВ1. Допустим, что замыкание самоустранилось и снабжение линии от подстанции ПС1 до ПС2 восстановилось.

В то же время, при замыкании в точках К2 и К3 выключатель Q2 отсекает линию до подстанции ПС3. Допустим, что это устоявшиеся замыкания, при срабатывании АПВ2 напряжение снова будет подано в сеть, но так как в точках К2 и К3 происходит замыкание, Q2 снова отключит линию.

Поэтому все аварийные ситуации по их продолжительности можно условно поделить на:

  • Кратковременные – те, которые обуславливаются относительно непродолжительным фактором (перемещением животных, падением веток и прочих элементов), которые создали протекание токов короткого замыкания на доли или несколько секунд, после чего и причина, и замыкание самоустранились.
  • Устоявшиеся – обусловленные постоянным фактором, который не может самоустраниться без вмешательства персонала (обрыв провода, разрушение изоляции и прочие). В таких ситуациях возникают устойчивые кз, которые устраняются только отключением выключателей и последующим ремонтом.

На практике автоматическое повторное включение срабатывает во всех ситуациях, но успешное включение происходит только в случае, когда причина устранилась, то есть при кратковременных повреждениях. Если же после первой повторной подачи автоматическое восстановление не произошло, в зависимости от типа, могут применяться следующие ступени повторного включения. В соответствии с местными условиями системы АПВ могут иметь различные особенности работы.

Так как 50% всех отключений удается повторно запитать от однократного АПВ, то первая ступень считается наиболее эффективной. Вторая отстраивается с временным промежутком в несколько секунд или десятков секунд, и, как показывает статистика, позволяет запитать потребителя еще в 15% случаев.

Классификация

В зависимости от количества фаз, задействованных для повторного включения все АПВ подразделяют на:

  • Однофазные – предназначены для автоматического ввода только одной фазы, на которой произошло замыкание, как правило, применяются для линий 500кВ и выше;
  • Трехфазные – характеризуются воздействием на привод выключателя, который сразу повторно включает все три фазы;
  • Комбинированные — осуществляют автоматическое включение электрических аппаратов посредством логического выбора одной или всех трех, в зависимости от типа замыкания.

В свою очередь, трехфазные АПВ подразделяются на такие классы:

  • С односторонним питанием – когда линия запитывается только от одного источника, соответственно, оперативный ток запускает цепь повторного включения только для одного высоковольтного выключателя.
  • С двухсторонним питанием – когда участок сети получает электроснабжение сразу от двух источников и система АПВ вынуждена повторно включать сразу два коммутационных аппарата.

Также двухстороннее АПВ подразделяется на:

  • Несинхронное повторное включение, когда система выполняет одновременный ввод выключателей с двух сторон. При этом синхронность включения и процессов в линии не соблюдается.
  • С ожиданием синхронизма – подает питание сначала с одной стороны, а затем с другой.
  • С улавливанием синхронизма – подбирает время включения в соответствии с удаленностью точки замыкания для предотвращения возникновения несимметричных режимов, ударов тока и прочих эффектов.
  • Быстродействующие АПВ – позволяют осуществить повторное включение в максимально короткий промежуток времени.

Помимо вышеизложенных способов классификации, АПВ могут различаться по способу включения – от механического воздействия или посредством электрического сигнала. Также существует разделение по количеству ступеней включения – одна или несколько, в зависимости от того, сколько раз АПВ пытается повторно включить питание. Принцип действия повторного включения может отстраиваться как от наличия напряжения в линии, так и от его отсутствия.

Принцип работы

Рассмотрите принцип работы автоматического повторного включения на примере такой схемы.

Принципиальная схема АПВ

Рис. 2: Принципиальная схема АПВ

Как видите на рисунке 2, напряжение подается на шину управления ШУ, на схеме показан пример питания от источника постоянного тока + ШУ и – ШУ. В данном примере устройство АПВ управляется механизмами:

  • контроля синхронизации;
  • положения контактов выключателя;
  • запрета АПВ;
  • разрешения подготовки.

Релейная защита реализуется посредством реле времени РВ и промежуточного РП. Последнее имеет две обмотки: по току РП I и по напряжению РП U. В нормальном режиме к ШУ приложено напряжение, которое заряжает конденсатор С при наличии соответствующего сигнала от цепей разрешения подготовки. Но повторное включение блокируется сигналом цепи запрета АПВ, который отстраивается на основе резисторов R1 и R2, находящихся в последовательном соединении с управленческими цепями.

В случае отключения трансформатора, линии или других участков, сигнал контроля синхронизации замыкает цепь для РВ. Которое при отсчете установленного промежутка времени выполняет замыкание собственных контактов, они, в свою очередь, шунтируют резистор R. После чего происходит разряд конденсатора на обмотку напряжения РП. При этом возбуждается и токовая катушка, которая притягивает контакты реле и замыкает цепь на включение выключателя.

Если трехфазное кз прекратилось и электроснабжение возобновится, то контроль синхронизации подает сигнал на размыкание обмотки РВ. После чего в цепь снова вводится сопротивление R и происходит возврат реле в обесточенное состояние. После возврата устройства в режим ожидания сразу происходит заряд конденсатора С для готовности к последующему повторному включению.

Узел Н позволяет вывести повторное включение на время проведения каких-либо плановых манипуляций оперативным персоналом.

Предъявляемые требования

Для обеспечения заявленных режимов и безопасных условий работы оборудования, к устройствам автоматического повторного включения предъявляется ряд требований:

  • Быстродействие – должна обеспечивать скорость перехода, определяемая типом питаемых устройств и категорией потребителя. Но, при этом, скорость не должна выполнять повторное включение до полного рассеивания электрической дуги. Так как в противном случае, даже при кратковременных повреждениях возможна повторная ионизация изолирующего промежутка.
  • Устойчивость к аварийному режиму – устройства ТАПВ и резервных защит не должны снижать качество и скорость реагирования из-за перепадов электрических величин.
  • Селективность АПВ – система должна отстраивать свою работу в соответствии с другими устройствами аварийной автоматики, не прерывая действия защит. Рисунок 3: Согласование АПВ с другими защитами
  • В случае оперативных отключений с целью проведения плановых работ, АПВ должно выводиться из цепи, чтобы ошибочно не подать напряжение на шины подстанции и не подвергнуть угрозе персонал.
  • После срабатывания повторного включения коммутационное устройство должно возвращаться во включенное положение. При неуспешном АПВ должен происходить автоматический возврат в отключенное положение.
  • Для некоторых видов защит (газовой, дифференциальной и прочих, реагирующих на повреждение трансформатора) должен устанавливаться запрет на повторное включение. Также отключенное положение должно сохранятся при возникновении аварийного режима в силовых электрических машинах.
  • При повторных включениях должны блокироваться неконтролируемые многократные АПВ во избежание разрушающих воздействий устойчивых токов кз на устройства. Рисунок 4: Увеличение тока при кз

Особенности эксплуатации АПВ

Следует отметить, что работа повторного включения должна контролироваться исключительно теми работниками, на балансе которых находятся соответствующие распределительные сети. При этом допуск постороннего персонала может производиться только под надзором ответственного работника.

Помимо того, что все случаи срабатывания АПВ для обратного включения тех же шин, линий или трансформаторов фиксируют приборы учета, они должны регистрироваться оперативными работниками в соответствующем журнале. После чего специалисты, обслуживающие устройства защиты шин, линий и силового оборудования подстанции должны провести анализ работы повторного включения с составлением соответствующих документов.

Периодически, для проверки работоспособности устройств АПВ, персонал обязан вывести его из работы. После чего производится комплекс испытательных мер, как совместно с остальными защитами, так и отдельно. По результатам проверки должен выдаваться протокол об исправности или неисправности АПВ. В последнем случае применяются меры для восстановления или отладки нормальной работы повторного включения, и производится внеочередная проверка.

Если для линии предусмотрено включение резерва, то повторное включение может не использоваться. Чтобы работа АПВ не нарушала переход системы на резервное питание.

Источник https://itexn.com/11782_ustranenie-i-preduprezhdenie-avarij-i-nepoladok-jelektrooborudovanija-2.html

Источник http://tokidet.ru/elektrooborudovanie/zashhitnoe/kak-proverit-difavtomat-na-rabotosposobnost-5-sposobov.html

Источник https://www.asutpp.ru/avtomaticheskoe-povtornoe-vklyuchenie.html

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: