Выбор автомата защиты: по току, нагрузке, сечению провода

Содержание

Выбор номинала автомата защиты

Собирая электрощиток или подключая новую крупную бытовую технику, домашний мастер обязательно столкнется с такой проблемой как необходимость подбора автоматических выключателей. Они обеспечивают электро и пожарную безопасность, потому правильный выбор автомата — залог безопасности вас, семьи и имущества.

Для чего служит автомат

В цепи электропитания автомат ставят для предупреждения перегрева проводки. Любая проводка рассчитана на прохождение какого-то определенного тока. Если пропускаемый ток превышает это значение, проводник начинает слишком сильно греться. Если такая ситуация сохраняется достаточный промежуток времени, начинает плавиться проводка, что приводит к короткому замыканию. Автомат защиты ставят чтобы предотвратить эту ситуацию.

Пакетник или автомат защиты необходим для предотвращения перегрева проводников и отключения в случае КЗ

Пакетник или автомат защиты необходим для предотвращения перегрева проводников и отключения в случае КЗ

Вторая задача автомата защиты — при возникновении тока короткого замыкания (КЗ) отключить питание. При замыкании токи в цепи возрастают многократно и могут достигать тысяч ампер. Чтобы они не разрушили проводку и не повредили аппаратуру, включенную в линию, автомат защиты должен отключить питание как можно быстрее — как только ток превысит определенный предел.

Чтобы защитный автоматический выключатель исправно выполнял свои функции, необходимо правильно сделать выбор автомата по всем параметрам. Их не так много — всего три, но с каждой надо разбираться.

Какие бывают автоматы защиты

Для защиты проводников однофазной сети 220 В есть отключающие устройства однополюсные и двухполюсные. К однополюсным подключается только один проводник — фазный, к двухполюсным и фаза и ноль. Однополюсные автоматы ставят на цепи 220 В внутреннего освещения, на розеточные группы в помещениях с нормальными условиями эксплуатации. Их также ставят на некоторые виды нагрузки в трехфазных сетях, подключая одну из фаз.

Для трехфазных сетей (380 В) есть трех и четырех полюсные. Вот эти автоматы защиты (правильное название автоматический выключатель) ставят на трехфазную нагрузку (духовки, варочные панели и другое оборудование которое работает от сети 380 В).

В помещениях с повышенной влажностью (ванная комната, баня, бассейн и т.д.) ставят двухполюсные автоматические выключатели. Их также рекомендуют устанавливать на мощную технику — на стиральные и посудомоечные машины, бойлеры, духовые шкафы и т.д.

Просто в аварийных ситуациях — при коротком замыкании или пробое изоляции — на нулевой провод может попасть фазное напряжение. Если на линии питания установлен однополюсный аппарат, он отключит фазный провод, а ноль с опасным напряжением так и останется подключенным. А значит, остается вероятность поражения током при прикосновении. То есть, выбор автомата прост — на часть линий ставятся однополюсные выключатели, на часть — двухполюсные. Конкретное количество зависит от состояния сети.

Автоматы для однофазной сети

Автоматы для однофазной сети

Для трехфазной сети существуют трехполюсные автоматические выключатели. Такой автомат ставится на входе и на потребителях, к которым подводятся все три фазы — электроплита, трехфазная варочная панель, духовой шкаф и т.д. На остальных потребителей ставят двухполюсные автоматы защиты. Они в обязательном порядке должны отключать и фазу и нейтраль.

Пример разводки трехфазной сети - типы автоматов защиты

Пример разводки трехфазной сети — типы автоматов защиты

Выбор номинала автомата защиты от количества подключаемых к нему проводов не зависит.

Определяемся с номиналом

Собственно, из функций защитного автомата и следует правило определения номинала автомата защиты: он должен срабатывать до того момента, когда ток превысит возможности проводки. А это значит, что токовый номинал автомата должен быть меньше чем максимальный ток, который выдерживает проводка.

На каждую линию требуется правильно выбрать автомат защиты

На каждую линию требуется правильно выбрать автомат защиты

Исходя из этого, алгоритм выбора автомата защиты прост:

    для конкретного участка.
  • Смотрите, какой максимальный ток выдерживает данный кабель (есть в таблице).
  • Далее из всех номиналов защитных автоматов выбираем ближайший меньший. Номиналы автоматов привязаны к допустимым длительным токам нагрузки для конкретного кабеля — они имеют немного меньший номинал (есть в таблице). Выглядит перечень номиналов следующим образом: 16 А, 25 А, 32 А, 40 А, 63 А. Вот из этого списка и выбираете подходящий. Есть номиналы и меньше, но они уже практически не используются — слишком много электроприборов у нас появилось и имеют они немалую мощность.

Пример

Алгоритм очень прост, но работает безошибочно. Чтобы было понятнее, давайте разберем на примере. Ниже приведена таблица в которой указаны максимально допустимый ток для проводников, которые используют при прокладке проводки в доме и квартире. Там же даны рекомендации относительно использования автоматов. Они даны в колонке «Номинальный ток автомата защиты». Именно там ищем номиналы — он немного меньше предельно допустимого, чтобы проводка работала в нормальном режиме.

Сечение жил медных проводов Допустимый длительный ток нагрузки Максимальная мощность нагрузки для однофазной сети 220 В Номинальный ток защитного автомата Предельный ток защитного автомата Примерная нагрузка для однофазной цепи
1,5 кв. мм 19 А 4,1 кВт 10 А 16 А освещение и сигнализация
2,5 кв. мм 27 А 5,9 кВт 16 А 25 А розеточные группы и электрический теплый пол
4 кв.мм 38 А 8,3 кВт 25 А 32 А кондиционеры и водонагреватели
6 кв.мм 46 А 10,1 кВт 32 А 40 А электрические плиты и духовые шкафы
10 кв. мм 70 А 15,4 кВт 50 А 63 А вводные линии

В таблице находим выбранное сечение провода для данной линии. Пусть нам необходимо проложить кабель сечением 2,5 мм 2 (наиболее распространенный при прокладке к приборам средней мощности). Проводник с таким сечением может выдержать ток в 27 А, а рекомендуемый номинал автомата — 16 А.

Как будет тогда работать цепь? До тех пор, пока ток не превышает 25 А автомат не отключается, все работает в штатном режиме — проводник греется, но не до критических величин. Когда ток нагрузки начинает возрастать и превышает 25 А, автомат еще некоторое время не отключается — возможно это стартовые токи и они кратковременны. Отключается он если достаточно длительное время ток превысит 25 А на 13%. В данном случае — если он достигнет 28,25 А. Тогда электропакетник сработает, обесточит ветку, так как это ток уже представляет угрозу для проводника и его изоляции.

Расчет по мощности

Можно ли выбрать автомат по мощности нагрузки? Если к линии электропитания будет подключено только одно устройство (обычно это крупная бытовая техника с большой потребляемой мощностью), то допустимо сделать расчет по мощности этого оборудования. Так же по мощности можно выбрать вводный автомат, который устанавливается на входе в дом или в квартиру.

Если ищем номинал вводного автомата, необходимо сложить мощности всех приборов, которые будут подключены к домовой сети. Затем найденная суммарная мощность подставляется в формулу, находится рабочий ток для этой нагрузки.

Формула для вычисления тока по суммарной мощности

Формула для вычисления тока по суммарной мощности

После того, как нашли ток, выбираем номинал . Он может быть или чуть больше или чуть меньше найденного значения. Главное, чтобы его ток отключения не превышал предельно допустимый ток для данной проводки.

Когда можно пользоваться данным методом? Если проводка заложена с большим запасом (это неплохо, кстати). Тогда в целях экономии можно установить автоматически выключатели соответствующие нагрузке, а не сечению проводников. Но еще раз обращаем внимание, что длительно допустимый ток для нагрузки должен быть больше предельного тока защитного автомата. Только тогда выбор автомата защиты будет правильным.

Выбираем отключающую способность

Выше описан выбор пакетника по максимально допустимому току нагрузки. Но автомат защиты сети также должен отключаться при возникновении с сети КЗ (короткого замыкания). Эту характеристику называют отключающей способностью. Она отображается в тысячах ампер — именного такого порядка могут достигать токи при коротком замыкании. Выбор автомата по отключающей способности не очень сложен.

Эта характеристика показывает, при каком максимальном значении тока КЗ автомат сохраняет свою работоспособность, то есть, он сможет не только отключится, но и будет работать после повторного включения. Эта характеристика зависит от многих факторов и для точного подбора необходимо определять токи КЗ. Но для проводки в доме или квартире такие расчеты делают очень редко, а ориентируются на удаленность от трансформаторной подстанции.

Отключающая способность автоматических защитных выключателей

Отключающая способность автоматических защитных выключателей

Если подстанция находится недалеко от ввода в ваш дом/квартиру, берут автомат с отключающей способностью 10 000 А, для всех остальных городских квартир достаточно 6 000 А. Если же дом находится в сельской местности иди вы выбираете автомат защиты электросети для дачи, вполне может хватить и отключающей способности в 4 500 А. Сети тут обычно старые и токи КЗ большими не бывают. А так как с возрастанием отключающей способности цена возрастает значительно, можно применить принцип разумной экономии.

Можно ли в городских квартирах ставить пакетики с более низкой отключающей способностью. В принципе, можно, но никто не гарантирует, что после первого же КЗ вам не придется его менять. Он может успеть отключить сеть, но окажется при этом неработоспособным. В худшем варианте контакты расплавятся и отключиться автомат не успеет. Тогда проводка расплавится и может возникнуть пожар.

Тип электромагнитного расцепителя

Автомат должен срабатывать при повышении тока выше определенной отметки. Но в сети периодически возникают кратковременные перегрузки. Обычно они связаны с пусковыми токами. Например, такие перегрузки могут наблюдаться при включении компрессора холодильника, мотора стиральной машины и т.д. Автоматический выключатель при таких временных и краткосрочных перегрузках отключаться не должен, потому у них есть определенная задержка на срабатывание.

Но если ток возрос не из-за перегрузки а из-за КЗ, то за время, которое «выжидает» автоматический выключатель, контакты его расплавятся. Вот для этого и существует электромагнитный автоматический расцепитель. Он срабатывает при определенной величине тока, которая уже не может быть перегрузкой. Этот показатель называют еще током отсечки, так как в этом случае автоматический выключатель отсекает линию от электропитания. Величина тока срабатывания может быть разной и отображается буквами, которые стоят перед цифрами, обозначающими номинал автомата.

Есть три самых ходовых типа:

  • B — срабатывает при превышении номинального тока в 3-5 раз;
  • C — если он превышен в 5-10 раз;
  • D — если больше в 10-20 раз.

С какой же характеристикой выбрать пакетник? В данном случае выбор автомата защиты также основывается на отдаленности вашего домовладения от подстанции и состояния электросетей выбор автомата защиты проводят ползуясь простыми правилами:

  • С буквой «B» на корпусе подходят для дач, домов селах и поселках, которые получают электропитание через воздушки. Также их можно ставить в квартиры старых домов, в которых реконструкция внутридомовой электросети не производилась. Эти защитные автоматы далеко не всегда есть в продаже, стоят немного дороже категории С, но могут доставляться под заказ.
  • Пакетники с «C» на корпусе — это наиболее широко распространенный вариант. Они ставятся в сетях с нормальным состоянием, подходят для квартир в новостройках или после капремонта, в частных домах недалеко от подстанции.
  • Класс D ставят на предприятиях, в мастерских с оборудованием, имеющим высокие пусковые токи.

То есть по сути выбор автомата защиты в этом случае прост — для большинства случаев подходит тип C. Он и есть в магазинах в большом ассортименте.

Каким производителям стоит доверять

И напоследок уделим внимание производителям. Выбор автомата нельзя считать завершенным, если вы не подумали о том, какой фирмы автоматические выключатели вы будете покупать. Точно не стоит брать неизвестные фирмы — электрика не та область, где можно ставить эксперименты. Подробно о выборе производителя в видео.

Как не оконфузиться при выборе автоматического выключателя

Краткая заметка по поводу выбора автоматических выключателей. Искренне надеюсь, что читатель не узнает для себя ничего нового.

У поста есть видеоверсия на моем ютуб канале. Реалии времени заставляют меня делать еще и видео:

Определимся с целью

Для начала нужно определиться — для чего нам автоматический выключатель в электрощите. Задача автоматического выключателя — прежде всего защитить стационарную кабельную линию от протекания токов свыше предельно допустимых. Если ток превышен — то проводники нагреваются, с плавлением и разрушением изоляции или расплавлением самих проводников. И если не случится пожара, то случится дорогостоящий ремонт, с работами по замене замурованной в стенах электропроводки. А ток может быть превышен, если к линии подключили слишком много потребителей (происходит перегрузка) или если происходит короткое замыкание. Неправильный выбор характеристик автоматического выключателя — путь к дорогостоящему ремонту, а при особенной везучести — к пожару.

Номинальный ток

Поняв, что автоматический выключатель должен защитить кабельную линию от протекания тока свыше допустимого, мы должны понять, какой же ток допустимый. Чаще всего ссылаются на вот эту табличку из ПУЭ (таблица 1.3.4):

Но, на мой субъективный взгляд, у этой таблички есть существенный недостаток, и он указан в источнике — эта табличка составлена для окружающей температуры +25, температуры земли +15 и температуры жилы (. ) +65. Длительная работа изоляции при повышенной температуре ускоряет процесс старения полимеров, поэтому мое личное мнение — указанные в таблице цифры стоит уменьшить хотя бы на 1/4. Если кабель проложен таким образом, что его охлаждение затруднено, то предельно допустимый рабочий ток также уменьшают. Например если кабель расположен в пучке с другими кабелями или под слоем теплоизоляции.

И вот в этом месте подходим к самой неочевидной вещи. В таблице указаны предельно допустимые токи, а на автоматических выключателях указан номинальный ток. Номинальный ток автоматического выключателя, указанный на нем — это ток, который может длительно проходить через автоматический выключатель и не вызывать его отключения. Для определения тока отключения заглянем в документацию, в график время-токовых характеристик:

Но это график конкретного экземпляра автоматического выключателя. В реальном мире, у автоматических выключателей есть разброс характеристик, даже у выключателей взятых из одной коробки. Поэтому на графике изображена область, в которой окажется характеристика случайно взятого автоматического выключателя.

В результате, если взять определенный ток, то мы получим диапазон значений времени, за которое сработает автоматический выключатель. От и до, как например вот здесь:

Думаю очевидно, что в расчетах стоит полагать, что нам попался самый плохой экземпляр, и берется самое худшее значение.

В автоматическом выключателе есть два расцепителя — тепловой, который достаточно точный, но медленный, и электромагнитный — очень быстрый, но неточный. (В посте (https://serkov.su/blog/?p=5563) я разбирал, как к такому пришли, и почему лучше пока ничего не придумали.) В итоге получается нелинейная зависимость времени срабатывания от протекающего тока. Для наглядности возьмем автоматический выключатель, на котором указан номинальный ток 16А. При перегрузке будет работать тепловой расцепитель:

До тока в 1,13 от номинального, расцепления совсем не произойдет (16*1,13=18,08А)

При токе в 1,45 от номинального тепловой расцепитель сработает, но за время менее 1 часа (!). (16*1,45=23,2А)

При токе в 2,55 от номинального тепловой расцепитель сработает за время менее 60 сек. (16*2,55= 40А)

При превышении тока еще сильнее — сработает электромагнитный расцепитель, но об этом чуть позже.

Все это становится понятнее, если взглянуть на график:

Откуда взялись эти магические цифры? Из стандарта (у нас в стране — ГОСТ 60898-1-220). Просто разработчики условились, что разброс параметров срабатывания расцепителей должны быть в этих пределах. Причем скорее всего взяли просто две удобные точки времени — 1 час и 1 минута, и воспользовались статистическими данными, чтобы получить кратности номинального тока.

Ну и чтобы совсем жизнь мёдом не казалась, стоит добавить, что в зависимости от температуры окружающей среды применяют коэффициенты. На жаре тепловой расцепитель прогревается и срабатывает быстрее, а вот на морозе наоборот.

А теперь сценарий везунчика по жизни. В частный дом заходит кабель, сечением 1,5 мм2. Щиток с автоматическим выключателем находится в холодном предбаннике, когда на улице мороз -35. Кабель от щитка идет через стену под слоем утеплителя. Автоматический выключатель на 16А почти час (!) будет пропускать ток в (16*1,45*1,25(поправочный на температуру, рис.4) = 29А. При 19А по табличке из ПУЭ у нас жилы будут горячими — +65С, а под слоем утеплителя изоляция уже начнет плавиться.

Еще раз резюмирую: Номинальный ток автоматического выключателя НЕ РАВЕН предельно допустимому току кабеля. Предельный ток кабеля должен вызывать отключение автоматического выключателя в адекватное время.

Тип электромагнитного расцепителя

Тепловой расцепитель медленный, что плохо при коротком замыкании — токи могут быть огромными, и даже за одну секунду могут наделать бед. Поэтому в конструкцию автоматического выключателя добавили электромагнитный расцепитель, который срабатывает за доли секунды. Но он настроен на ток в разы превышающий номинальный.

Дело в том, что некоторые виды потребителей при включении потребляют ток в разы, превышающий ток в рабочем режиме. Например мотор в пылесосе в момент включения кратковременно потребляет ток в 2-3 раза больший, но после разгона мотора, потребление снижается. Возможно вы замечали, как лампочки накаливания слегка притухают в момент включения чего-то как раз из-за этого. Вот график потребления тока мотора пылесоса:

Чтобы эти пусковые токи не заставляли сработать электромагнитный расцепитель, его характеристику сдвинули в зону бОльших токов, что бы такие кратковременные превышения тока были в зоне теплового расцепителя, который в силу своей инерционности такие краткосрочные процессы не замечает.

В итоге получилась линейка автоматических выключателей с одинаковыми тепловыми расцепителями, но с разными электромагнитными. Из-за огромного разброса параметров электромагнитных расцепителей — получились большие разбросы кратности тока срабатывания:

Характеристика В — электромагнитный расцепитель сработает при превышении тока в 3-5 раз

Характеристика С — электромагнитный расцепитель сработает при превышении тока в 5-10 раз

Характеристика D — электромагнитный расцепитель сработает при превышении тока в 10-20 раз

Вот они на графике:

Есть и другие характеристики (K, Z и т.д) но встречаются крайне редко и под заказ, поэтому опустим их.

Если по какой-то причине стартовые токи кратковременно попадут в зону действия электромагнитного расцепителя то возможны ложные срабатывания. И именно для исключения таких ложных срабатываний и сделали несколько типов характеристик.

Некоторые производители для упрощения указывают стартовые токи, вот например светодиодный драйвер уважаемой фирмы при включении кушает солидные 55А (из-за зарядки конденсатора в блоке питания), производитель даже сразу посчитал, сколько светодиодных драйверов можно подключить параллельно на один автоматический выключатель:

4 штуки с характеристикой В и 7 штук на автомат с характеристикой С. Кто бы мог подумать, что 150 ватт светодиодного света могут вышибать 16А автомат! Ситуация становится еще хуже, если используются некачественные светодиодные светильники, где производитель не только не предусмотрел плавный старт, да даже пусковой ток не регламентирует!

Если используется большое количество светодиодных светильников — то придется делить их на группы, чтобы одновременный пуск не вызывал срабатывание автоматического выключателя. Пытливый читатель задастся вопросом — а почему бы не взять просто автоматический выключатель с характеристикой «C» или «D»? Тогда бы пусковые токи не вызывали бы ложных срабатываний! Но не все так просто.

Ток короткого замыкания

Можно иногда услышать выражение «сопротивление цепи фаза-нуль», оно по сути про то же. Ток короткого замыкания — это величина тока в цепи, в случае если из-за повреждения случается короткое замыкание (прямое соединение фазного проводника и нейтрального, или соединение фазного и заземления) в самом дальнем участке. В идеальном мире с идеальными проводниками ток короткого замыкания был бы бесконечным. Но в реальном мире кабели имеют собственное сопротивление, и чем они длиннее тоньше — тем выше их собственное сопротивление. При обычной работе это не так важно — их собственное сопротивление много меньше сопротивления нагрузки. Но если случится короткое замыкание, ток будет ограничен именно этим собственным сопротивлением всех проводников в цепи + внутреннее сопротивление источника тока.

А теперь смотрим. В деревне Вилларибо измеренный ток короткого замыкания линии 278 Ампер, и электрик поставил автоматический выключатель С16:

Как видим все отлично — при коротком замыкании тока будет достаточно, чтобы электромагнитный расцепитель сработал. А вот в деревне Вилабаджо очень плохая проводка, и ток короткого замыкания всего 124 А. Смотрим на график:

В самом худшем случае, электромагнитный расцепитель типа «С» сработает при токе в 10 раз больше номинального (16*10=160А). А значит при 124А возможна ситуация, когда электромагнитный расцепитель при коротком замыкании не сработает, а пока тепловой расцепитель успеет сработать — по линии будет гулять ток в 124А, что может закончиться плохо. В таком случае деревне Вилабаджо нужно или менять проводку, чтобы уменьшить потери, или использовать автоматический выключатель типа В16, у которого электромагнитный расцепитель сработает в худшем случае при токе 5*16=80А. Теперь вы понимаете, почему характеристика типа D (10-20 *Iном) в некоторых случаях изощренный способ стрелять себе в ногу?

Как же определить ток короткого замыкания? Для проектируемых линий его можно расчитать — длина кабеля известна, сечение тоже. Для линий уже находящихся в эксплуатации — только измерять, поскольку никто не знает, на что пришлось пойти электрикам при ремонте поврежденных участков.

Для определения тока короткого замыкания есть специальные приборы. Показывать современные не интересно, поэтому покажу суровый советский олдскул, который есть у меня. М-417 измеряет сопротивление цепи путем измерения падения напряжения на известном сопротивлении, а ток короткого замыкания необходимо рассчитывать:

Щ41160, творение сумрачного советского гения. Устраивает короткое замыкание на доли секунды и измеряет ток непосредственно. В коричневой коробочке на проводе — предохранитель на 100А.:

Как правило, ток короткого замыкания измеряют при введении линии в эксплуатацию, и планово, раз в несколько лет. Только после измерения тока короткого замыкания можно сказать, правильно ли подобрана защита.

Ток короткого замыкания равен . Oh shi.

Если ток короткого замыкания будет черезчур большим? Вот тут мы сталкиваемся с отключающей способностью автоматического выключателя. В момент размыкания контактов выключателя загорается электрическая дуга, которая сама по себе проводит ток и гаснет неохотно. Для ее принудительного разрушения в конструкции автоматических выключателей предусмотрены дугогасительные камеры. Вот здесь на высокоскоростной съемке видно как работает дугогасительная камера:

На автоматическом выключателе в прямоугольной рамке нанесена величина отключающей способности в амперах — это максимальный ток, который способен разомкнуть автоматический выключатель без поломки. Вот на фото автоматические выключатели с отключающей способностью в 3000, 4500, 6000 и 10000 А:

Для наглядности я их разобрал. Большая отключающая способность заставляет не только делать дугогасительные камеры больше, но и усиливать другие конструктивные части, например защиту от прогара вбок.

Отключающая способность автоматического выключателя должна быть больше тока короткого замыкания в линии. Как правило, 6000 А достаточно для большинства применений. 4500А обычно достаточно для работы в линиях старых домов, но может быть недостаточным в новых сетях.

Коммутационная стойкость

При каждом включении/отключении автомата меж контактов загорается дуга, которая постепенно разрушает контактную группу. Производитель часто указывает количество циклов включения/отключения, который должны выдержать контакты:

Отсюда легко видеть, что автоматический выключатель не замена нормальному выключателю при частом использовании. Если пожадничать, и вместо пускателя с контактором заставить сотрудника включать/отключать мешалку дергая автомат по 10 раз в день, то автомат может прийти в негодность менее чем за пару лет. Вот фото автоматического выключателя, контакты которого пришли в негодность из-за большого тока:

Помните, каждая коммутация и срабатывание автоматического выключателя «съедает» его ресурс.

Класс токоограничения

Наверное самая мистическая характеристика. Указывается в виде цифры в квадратике. Про нее в рунете написано мало и чаще ерунда. Класс токоограничения, если упрощать, говорит о количестве электричества, которое успеет пройти через автоматический выключатель при коротком замыкании прежде, чем он отключит цепь, и говорит о быстродействии. Всего классов три:

Что интересно, отечественными стандартами класс токоограничения не регламентируется, поэтому на картинке выше нет кириллицы. Цифры в таблице — это величина интеграла Джоуля. Отечественные производители указывают класс просто потому что «так принято», а не того требуют отечественные стандарты :) В быту на данный параметр можно не обращать внимание — классы хуже третьего встречаются в продаже не часто.

Селективность

Вам бы не хотелось, чтобы при перегрузке или коротком замыкании срабатывал автоматический выключатель где-то на столбе у ввода в дом. При последовательном соединении автоматов защиты, подбором их характеристик можно добиться селективности — свойству срабатывать защите ближайшей к повреждению, без срабатывания вышестоящей. И у меня две новости.

Хорошая — можно воспользоваться специальными таблицами, которые есть у многих производителей, и подобрать пары автоматических выключателей, которые при перегрузке будут обеспечивать селективность. На графике это видно как непересекающиеся графики работы расцепителей:

Но по графику вы могли понять, что плохая новость — обеспечить полную селективность автоматических выключателей при коротком замыкании затруднительно. Кривые пересекаются в области больших токов. Поэтому чаще всего речь о частичной селективности. Например, если синий график — автомат В10, а фиолетовый В40, то ток селективности составит 120А (значение взято из таблиц одного производителя для конкретной модели автоматов). Тоесть при токах меньше тока селективности — все отлично. При токах больше — сработать могут оба устройства защиты.

В бытовой серии модульных автоматических выключателей обеспечивать селективность, даже частичную, довольно трудно. Лишь большие и мощные устройства защиты, например на подстанциях, имеют тонкие настройки уставок расцепителей для обеспечения селективности с вышестоящими устройствами защиты.

Да скажи уже что ставить!?

Прежде всего то, что предусмотрено проектом.

Ну а если уж совсем среднестатистический случай с кучей оговорок, то:

Линия 1,5 мм2 — Автомат В10 с отключающей способностью 6000А

Линия 2,5 мм2 — Автомат В16 с отключающей способностью 6000А

Применение автоматического выключателя с характеристикой «C» или «D» вместо «B» должно иметь вескую причину.

Плюшки

Автоматические выключатели разных производителей могут содержать разные приятности/полезности, которые напрямую на защитные функции не влияют, но могут быть полезны:

Это различные шторки/колпачки/крышечки для пломбирования вводного автомата по требованию электросетевой компании.

Это визуальный индикатор фактического состояния контактов, такой индикатор останется красным, если контакты из-за перегрузки сварились

Это окошки для дополнительных нашлепок с электромагнитными расцепителями, контактами

Это дополнительное окошко у клемм для использования гребенки при подключении

и прочее и прочее.

Резюме

Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля! В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.

Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.

Если ток короткого замыкания в вашей линии мал — то использование автоматического выключателя требует вдумчивого подхода.

Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.

А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать защита

Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

выбор автоматических выключателей

Автоматический выключатель выбирается исходя из следующих условий:

1. Соответствие номинального напряжения выключателя Uн к номинальному напряжению сети Uс: Uн, Uс. (6.1)

2. Соответствие номинального тока расцепителя Iн.расц номинальному току нагрузки Iдн: Iн.расц , Iдн. (6.2)
3. Соответствие номинального тока расцепителя Iн.расц максимальному рабочему току Iраб.макс группы электроприемников (для вводных выключателей питания сборок и щитов) в длительном режиме: Iн.расц , Iраб.макс. (6.3).

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

4. Условие предельной коммутационной стойкости (ПКС): каталожное значение ПКС должно быть не менее максимального значения тока короткого замыкания (Iкз.макс), протекающего в цепи в момент расхождения контактов выключателя: ПКС > Iкз.макс. Это необходимо, чтобы автоматический выключатель смог выдержать токовые перегрузки при коротком замыкании в цепи.

Защита от перегрузки

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

Ток срабатывания защиты от перегрузки определяется из условий возврата защиты после окончания пуска или самозапуска электродвигателя:
где kн – коэффициент надежности, учитывающий некоторый запас по току, неточности настройки и разброс срабатывания защиты (1,0 – для современных АВ фирмы Schneider Electric, 1,15 – для АЕ20, А3700; 1,25 – для А3100, АП-50; 1,2 , 1,35 – для ВА51);

kв – коэффициент возврата защиты.

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

Защита считается эффективной, если:

Для выключателей с тепловым и электромагнитным (комбинированным) расцепителем условие (6.5) обеспечивается автоматически при выборе номинального тока расцепителя по условию (6.2). Наилучшая защита от перегрузки обеспечивается, если удается подобрать выключатель, имеющий Iн.расц = Iдн. В этом случае, имея в виду, что для термобиметаллических тепловых реле kв = 1, ток срабатывания защиты от перегрузки составит:

Токовая отсечка (для АВ с двухступенчатой ВТХ)

Токовую отсечку выключателя отстраивают от пускового тока электродвигателя, который состоит из периодической составляющей, почти неизменной в течение всего времени пуска, и апериодической составляющей, затухающей в течение нескольких периодов. Несрабатывание отсечки при пуске двигателя обеспечивается выбором токовой отсечки по выражению:

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

где kн.пуск = kз·kа·kр – коэффициент надежности отстройки отсечки от пускового тока электродвигателя;

1,05 – коэффициент, учитывающий, что в нормальном режиме может быть на 5% выше номинального напряжения электродвигателя;

kз – коэффициент запаса;

kа – коэффициент, учитывающий наличие апериодической составляющей в пусковом токе электродвигателя;

kр – коэффициент, учитывающий возможный разброс тока срабатывания отсечки относительно уставки.

Мгновенная токовая отсечка (для АВ с трехступенчатой ВТХ)

Для выключателей с трехступенчатой защитной характеристикой мгновенную отсечку выключателя отстраивают от пикового значения пускового тока электродвигателя:

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

Кроме того, токовая отсечка должна надежно защищать электродвигатель от минимального тока КЗ при повреждении в конце кабельной линии: где (1)

к.R I – минимальный ток однофазного КЗ в конце кабеля, вычисленный с учетом токоограничивающего действия дуги в месте повреждения.

Выбор уставок автоматических выключателей питания сборок и щитов

Выбор тока срабатывания отсечки выполняется по приводимым ниже условиям, из которых принимается наибольшее полученное значение. Соответствие данным условиям позволяет обеспечить селективную работу автоматических выключателей в разных частях электрический цепи.

1) Несрабатывание при максимальном рабочем токе Iраб.макс с учетом его увеличения в kсзп раз при самозапуске электродвигателей:

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

где kн = kз·kа·kр – коэффициент надежности отстройки отсечки от тока самозапуска.

Ток самозапуска Iсзп = kсзп· Iраб.макс определяется из расчетов самозапуска. При этом без ущерба для точности расчетов допускается считать, что электродвигатели запускаются из состояния покоя.

При отсутствии данных расчетов самозапуска, для отдельных сборок Iсзп принимается приближенно равным сумме пусковых токов электродвигателей и другой нагрузки сборки, участвующих в самозапуске:

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

где kil – кратность пускового тока l-ого двигателя с номинальным током Iднl.

С другой стороны, в соответствии с источником [11]:

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

где Iдн – суммарный номинальный ток электродвигателей;

ki – усредненное значение кратности пусковых токов электродвигателей.

Также существует третий способ расчета Iсзп:

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

где kii – кратность пускового тока i-ого двигателя номинальной мощностью Рднi.

Ввиду того, что среди прочих проверок отстройка от тока самозапуска имеет, как правило, определяющее значение, предпочтение следует отдать расчетам самозапуска с помощью ЭВМ.

2) Несрабатывание при полной нагрузке щита (сборки) и пуске наиболее мощного электродвигателя:

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

где kн – коэффициент надежности отстройки отсечки от тока самозапуска;

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

раб макс i I – сумма максимальных рабочих токов электроприемников, питающихся от щита или сборки, кроме двигателя с наибольшим пусковым током Iпуск.макс.

Выбор автоматических выключателей для защиты одиночных асинхронных электродвигателей

Применение изложенной методики продемонстрируем на примере защиты асинхронных электродвигателей 0,4 кВ энергоблока 63 МВт газомазутной ТЭЦ автоматическими выключателями Compact NS с электронными расцепителями. Электродвигатели и их параметры перечислены в табл.6.1.

Электродвигатели и их параметры

На основании условий (6.1), (6.2) и (6.4) подберем автоматические выключатели и расцепители, результаты представим в табл.6.1.

Так как рассматриваются автоматические выключатели зарубежного производства, для описания их параметров перейдем к обозначениям МЭК:

• номинальный ток автоматического выключателя – Iн = In;

• номинальное напряжение автоматического выключателя Uн = Un;

• номинальный ток расцепителя – Iн.расц = Ir;

• предельная коммутационная способность ПКС = Icu;

• пусковой ток электродвигателя Iпуск = Ia;

• пиковое значение пускового тока электродвигателя Iпуск.max = Iр.

Переход к другим обозначениям обусловлен спецификой наименования параметров АВ и расцепителей, ориентированной на зарубежную нормативно-техническую документацию.

Более подробно о характеристиках автоматических выключателей можно почитать в нашей статье.

Источник https://stroychik.ru/elektrika/vybor-avtomata

Источник https://habr.com/ru/post/542572/

Источник https://pue8.ru/vybor-elektrooborudovaniya/223-vybor-avtomaticheskih-vyklyuchateley.html

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: